Robust maximum likelihood estimation for stochastic state space model with observation outliers
J. AlMutawa
International Journal of Systems Science, 2016, vol. 47, issue 11, 2733-2744
Abstract:
The objective of this paper is to develop a robust maximum likelihood estimation (MLE) for the stochastic state space model via the expectation maximisation algorithm to cope with observation outliers. Two types of outliers and their influence are studied in this paper: namely,the additive outlier (AO) and innovative outlier (IO). Due to the sensitivity of the MLE to AO and IO, we propose two techniques for robustifying the MLE: the weighted maximum likelihood estimation (WMLE) and the trimmed maximum likelihood estimation (TMLE). The WMLE is easy to implement with weights estimated from the data; however, it is still sensitive to IO and a patch of AO outliers. On the other hand, the TMLE is reduced to a combinatorial optimisation problem and hard to implement but it is efficient to both types of outliers presented here. To overcome the difficulty, we apply the parallel randomised algorithm that has a low computational cost. A Monte Carlo simulation result shows the efficiency of the proposed algorithms.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1018369 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:11:p:2733-2744
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1018369
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().