Optimal and robust control of a class of nonlinear systems using dynamically re-optimised single network adaptive critic design
Shivendra N. Tiwari and
Radhakant Padhi
International Journal of Systems Science, 2018, vol. 49, issue 2, 246-263
Abstract:
Following the philosophy of adaptive optimal control, a neural network-based state feedback optimal control synthesis approach is presented in this paper. First, accounting for a nominal system model, a single network adaptive critic (SNAC) based multi-layered neural network (called as NN1) is synthesised offline. However, another linear-in-weight neural network (called as NN2) is trained online and augmented to NN1 in such a manner that their combined output represent the desired optimal costate for the actual plant. To do this, the nominal model needs to be updated online to adapt to the actual plant, which is done by synthesising yet another linear-in-weight neural network (called as NN3) online. Training of NN3 is done by utilising the error information between the nominal and actual states and carrying out the necessary Lyapunov stability analysis using a Sobolev norm based Lyapunov function. This helps in training NN2 successfully to capture the required optimal relationship. The overall architecture is named as ‘Dynamically Re-optimised single network adaptive critic (DR-SNAC)’. Numerical results for two motivating illustrative problems are presented, including comparison studies with closed form solution for one problem, which clearly demonstrate the effectiveness and benefit of the proposed approach.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1408871 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:49:y:2018:i:2:p:246-263
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2017.1408871
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().