Optimal control for multi-stage and continuous-time linear singular systems
Yadong Shu and
Yuanguo Zhu
International Journal of Systems Science, 2018, vol. 49, issue 7, 1419-1434
Abstract:
In this paper, optimal control problems for multi-stage and continuous-time linear singular systems are both considered. The singular systems are assumed to be regular and impulse-free. First, a recurrence equation is derived according to Bellman's principle of optimality in dynamic programming. Then, by applying the recurrence equation, bang-bang optimal controls for the control problems with linear objective functions subject to two types of multi-stage singular systems are obtained. Second, employing the principle of optimality, a equation of optimality for settling the optimal control problem subject to a class of continuous-time singular systems is proposed. The optimal control problem may become simpler through solving this equation of optimality. Two numerical examples and a dynamic input–output model are presented to show the effectiveness of the results obtained.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2018.1454534 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:49:y:2018:i:7:p:1419-1434
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2018.1454534
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().