EconPapers    
Economics at your fingertips  
 

Finite-time distributed resilient state estimation subject to hybrid cyber-attacks: a new dynamic event-triggered case

Ying Sun, Xin Tian and Guoliang Wei

International Journal of Systems Science, 2022, vol. 53, issue 13, 2832-2844

Abstract: This paper is concerned with the issues of finite-time distributed resilient state estimation subject to hybrid cyber-attacks. The information exchanges among estimators are governed by an improved dynamic event-triggered mechanism, in which the time-varying threshold with predetermined upper and lower bounds is updated by artificial internal dynamics. With the help of the Lyapunov stability theory combined with the S-procedure, a sufficient condition is developed such that the augmented error dynamics are stochastic finite-time bounded. Furthermore, the desired estimator gains are acquired in terms of the solution to certain matrix inequalities which involve the information of communication topology, cyber-attack probabilities as well as the uncertainty of gain matrices. Finally, the effectiveness of the designed distributed state estimator is illustrated by a numerical example.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2022.2083256 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:53:y:2022:i:13:p:2832-2844

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2022.2083256

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:53:y:2022:i:13:p:2832-2844