EconPapers    
Economics at your fingertips  
 

Optimisation of fuzzy logic quadrotor attitude controller – particle swarm, cuckoo search and BAT algorithms

Mohamed Siddiq Zatout, Amar Rezoug, Abdellah Rezoug, Khalifa Baizid and Jamshed Iqbal

International Journal of Systems Science, 2022, vol. 53, issue 4, 883-908

Abstract: Bio-inspired optimisation algorithms have recently attracted much attention in the control community. Most of these algorithms mimic particular behaviours of some animal species in such a way that allows solving optimisation problems. The present paper aims at applying three metaheuristic methods for optimising fuzzy logic controllers used for quadrotor attitude stabilisation. The investigated methods are particle swarm optimisation (PSO), BAT algorithm and cuckoo search (CS). These methods are applied to find the best output distribution of singleton membership functions of the fuzzy controllers. The quadrotor control requires measured responses, therefore, three objective functions are considered: integral squared error, integral time-weighted absolute error and integral time-squared error. These metrics allow performance comparison of the controllers in terms of tracking errors and speed of convergence. The simulation results indicate that BAT algorithm demonstrated higher performance than both PSO and CS. Furthermore, BAT algorithm is capable of offering 50% less computation time than CS and 10% less time than PSO. In terms of fitness, BAT algorithm achieved an average of 5% better fitness than PSO and 15% better than CS. According to these results, the BAT-based fuzzy controller exhibits superior performance compared with other algorithms to stabilise the quadrotor.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2021.1978012 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:53:y:2022:i:4:p:883-908

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2021.1978012

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:53:y:2022:i:4:p:883-908