EconPapers    
Economics at your fingertips  
 

Optimal innovation-based attacks against remote state estimation with side information and historical data

Hua-Sheng Shan, Yi-Gang Li and Liwei An

International Journal of Systems Science, 2025, vol. 56, issue 3, 544-560

Abstract: This work investigates the attack strategy design problem of the false data injection attack against the cyber-physical system. Distinct from the relevant results which utilise the current intercepted data or additionally consider side information, a more universal attack model is proposed which combines historical data and side information with the current intercepted data to synergistically deteriorate the system estimation performance. In order to quantify the impact resulting from the proposed attack strategy, the optimisation objective is characterised by deriving the error covariance matrix under the attacks, which becomes more intricate since the proposed attack model introduces more decision variables and coupled terms. Take the stealthiness which is characterised by Kullback-Leibler divergence as the constraints, the problem investigated in this work is equivalently transformed into the constrained multi-variable non-convex optimisation problems, which are not able to be solved directly by the methods in the relevant results. By utilising the Lagrange multiplier method, the structural characteristic of the optimal mean and the optimal covariance which only related to the Lagrange multiplier are derived, such that the optimal distribution of the modified innovation is able to be obtained by a simple search procedure. Following that, the design of the optimal attack strategy is completed by using semi-definite programming to derive the optimal attack matrices. Finally, the simulation examples are given such that the validity of the results is verified.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2024.2395931 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:56:y:2025:i:3:p:544-560

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2024.2395931

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:56:y:2025:i:3:p:544-560