EconPapers    
Economics at your fingertips  
 

Lyapunov-based robust model predictive tracking controller design for discrete-time linear systems with ellipsoidal terminal constraint

Esmaeil Zare, Mazda Moattari and Tajedin Derikvand

International Journal of Systems Science, 2025, vol. 56, issue 3, 582-597

Abstract: In this article, a robust model predictive control (MPC) method is introduced based on Lyapunov-theory to control the discrete-time uncertain linear systems due to external disturbances. The structure of the proposed controller consists of two parts designed based on the offline/online schemes. In the offline-scheme, an $ {\boldsymbol{H}_\infty } $ H∞-based robust tracking controller is provided to satisfy the robust and tracking performance. Based on the $ {\boldsymbol{H}_\infty } $ H∞ performance, a new linear matrix inequality problem is developed to calculate the offline-controller gains. By considering the Lyapunov-function of the offline-controller as the terminal cost of the MPC and the designed offline-controller, the online optimisation problem (OOP) is structured. This means, the MPC is designed based on the stabilised system to satisfy the physical limitations of the overall controller and the system states. Moreover, to improve the feasibility problem of the OOP, an ellipsoidal terminal constraint is added to the proposed MPC problem. Therefore, compared with the existing min–max MPC and tube MPC, the advantages of the overall controller are feasibility improvement and reducing the computational complexity with less conservatism while the robustness against parametric uncertainties and disturbances is achieved. Two simulation examples are employed to show the superiorities of the proposed robust MPC.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2024.2397452 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:56:y:2025:i:3:p:582-597

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2024.2397452

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:56:y:2025:i:3:p:582-597