Throughput optimization in dual-gripper interval robotic cells
Milind Dawande,
H. Geismar,
Michael Pinedo and
Chelliah Sriskandarajah
IISE Transactions, 2010, vol. 42, issue 1, 1-15
Abstract:
Interval robotic cells with several processing stages (chambers) have been increasingly used for diverse wafer fabrication processes in semiconductor manufacturing. Processes such as low-pressure chemical vapor deposition, etching, cleaning and chemical-mechanical planarization, require strict time control for each processing stage. A wafer treated in a processing chamber must leave that chamber within a specified time limit; otherwise the wafer is exposed to residual gases and heat, resulting in quality problems. Interval robotic cells are also widely used in the manufacture of printed circuit boards.The problem of scheduling operations in dual-gripper interval robotic cells that produce identical wafers (or parts) is considered in this paper. The objective is to find a 1-unit cyclic sequence of robot moves that minimizes the long-run average time to produce a part or, equivalently, maximizes the throughput. Initially two extreme cases are considered, namely no-wait cells and free-pickup cells; for no-wait cells (resp., free-pickup cells), an optimal (resp., asymptotically optimal) solution is obtained in polynomial time. It is then proved that the problem is strongly NP-hard for a general interval cell. Finally, results of an extensive computational study aimed at analyzing the improvement in throughput realized by using a dual-gripper robot instead of a single-gripper robot are presented. It is shown that employing a dual-gripper robot can lead to a significant gain in productivity. Operations managers can compare the resulting increase in revenue with the additional costs of acquiring and maintaining a dual-gripper robot to determine the circumstances under which such an investment is appropriate.[Supplementary materials are available for this article. Go to the publisher's online edition of IIE Transactions for the following supplemental resources: Proofs of all theoretical results, a table summarizing these results, a summary of Algorithm FindCycle, and the Levner–Kats–Levit Algorithm.]
Date: 2010
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/07408170902789092 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:42:y:2010:i:1:p:1-15
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/07408170902789092
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().