Scheduling in two-machine robotic cells with a self-buffered robot
Emine Gundogdu and
Hakan Gultekin
IISE Transactions, 2016, vol. 48, issue 2, 170-191
Abstract:
This study considers a production cell consisting of two machines and a material handling robot. The robot has a buffer space that moves with it. Identical parts are to be produced repetitively in this flowshop environment. The problem is to determine the cyclic schedule of the robot moves that maximizes the throughput rate. After developing the necessary framework to analyze such cells, we separately consider the single-, double-, and infinite-capacity buffer cases. For single- and double-capacity cases, consistent with the literature, we consider one-unit cycles that produce a single part in one repetition. We compare these cycles with each other and determine the set of undominated cycles. For the single-capacity case, we determine the parameter regions where each cycle is optimal, whereas for the double-capacity case, we determine efficient cycles and their worst-case performance bounds. For the infinite-capacity buffer case, we define a new class of cycles that better utilizes the benefits of the buffer space. We derive all such cycles and determine the set of undominated ones.We perform a computational study where we investigate the benefits of robots with a buffer space and the effects of the size of the buffer space on the performance. We compare the performances of self-buffered robots, dual-gripper robots, and robots with swap ability.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/0740817X.2015.1047475 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:48:y:2016:i:2:p:170-191
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/0740817X.2015.1047475
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().