EconPapers    
Economics at your fingertips  
 

A multi-sensor fusion-based prognostic model for systems with partially observable failure modes

Hui Wu and Yan-Fu Li

IISE Transactions, 2024, vol. 56, issue 6, 624-637

Abstract: With the rapid development of sensor and communication technology, multi-sensor data is available to monitor the degradation of complex systems and predict the failure modes. However, two huge challenges remain to be resolved: (i) how to predict the failure modes with limited failure mode labeled systems to alleviate the heavy dependence on expert experience; (ii) how to effectively fuze the useful information from the multi-sensor data to achieve an accurate estimation of the degradation status automatically. To address these issues, we propose a novel semi-supervised prognostic model for the systems with partially observable failure modes, where only a small fraction of the systems in the training set are known for their failure modes. First, we develop a graph-based semi-supervised learning method to extract features characterizing the failure modes. Then, we input these features as well as the multi-sensor streams into an elastic net functional regression model to predict the residual useful lifetime. The proposed model is validated by extensive simulation studies and a case study of aircraft turbofan engines available from the NASA repository.

Date: 2024
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2023.2222402 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:56:y:2024:i:6:p:624-637

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20

DOI: 10.1080/24725854.2023.2222402

Access Statistics for this article

IISE Transactions is currently edited by Jianjun Shi

More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:uiiexx:v:56:y:2024:i:6:p:624-637