The digital twin synchronization problem: Framework, formulations, and analysis
Barış Tan and
Andrea Matta
IISE Transactions, 2024, vol. 56, issue 6, 652-665
Abstract:
As the adoption of digital twins increases steadily, it is necessary to determine how to operate them most effectively and efficiently. In this article, the digital twin synchronization problem is introduced and defined formally. Frequent synchronizations would increase cost and data traffic congestion, whereas infrequent synchronizations would increase the bias of the predictions and yield wrong decisions. This work defines the synchronization problem variants in different contexts. To discuss the problem and its solution, the problem of determining when to synchronize an unreliable production system with its digital twin to minimize the average synchronization and bias costs is formulated and analyzed analytically. The state-independent, state-dependent, and full-information solutions have been determined by using a stochastic model of the system. Solving the synchronization problem using simulation is discussed, and an approximate policy is proposed. Our results show that the performance of the state-dependent policy is close to the optimal solution that can be obtained with full information and significantly better than the performance of the state-independent policy. Furthermore, the approximate periodic state-dependent policy yields near-optimal results. To operate digital twins more effectively, the digital twin synchronization problem must be considered and solved to determine the optimal synchronization policy.
Date: 2024
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/24725854.2023.2253869 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:uiiexx:v:56:y:2024:i:6:p:652-665
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/uiie20
DOI: 10.1080/24725854.2023.2253869
Access Statistics for this article
IISE Transactions is currently edited by Jianjun Shi
More articles in IISE Transactions from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().