Sealing of fractures in a representative CO2 reservoir caprock by migration of fines
Kenton A. Rod,
Kirk J. Cantrell,
Tamas Varga,
Anil K. Battu and
Christopher F. Brown
Greenhouse Gases: Science and Technology, 2021, vol. 11, issue 3, 483-492
Abstract:
The impact of fines migration on fracture transmissivity reduction was investigated by injecting a brine solution containing a suspension of 0.1 wt.% kaolinite particles with a mean particle size distribution of 9.6 μm through fractured shale core samples. The fractures had apertures estimated to be approximately 100 μm. A mass balance approach was used to determine the quantity of kaolinite that was deposited within the fractures (influent – effluent = amount deposited in fractures). Large fractions (44–90%) of the suspended kaolinite pumped through the fractures were deposited within the fractures. Based on fracture volumes estimated with X‐ray computed tomography, it was determined that approximately 10 to 17% of the fracture volume was filled with kaolinite at the point when flow was completely restricted. These results indicate that 100 μm fractures in CO2 reservoir caprocks could be sealed within hours if the brines passing through the fractures contain a proportional volume of particulates to the tests performed in this laboratory study. © 2021 Battelle Memorial Institute. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1002/ghg.2061
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:11:y:2021:i:3:p:483-492
Access Statistics for this article
More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().