EconPapers    
Economics at your fingertips  
 

Experimental study on the flow characteristics of supercritical CO2 in reservoir sandstones from the Ordos Basin, China

Qianlin Zhu, Dongbao Chen, Shijian Lu and Shaojin Jiang

Greenhouse Gases: Science and Technology, 2024, vol. 14, issue 1, 197-208

Abstract: Understanding the flow characteristics of supercritical CO2 in dry sandstones or those with low water content provides crucial information on the flow behavior in near‐wellbore zone. We conducted supercritical CO2 core flooding experiments using sandstone cores extracted from potential CO2 reservoirs in the Ordos Basin, China. During the experiments, we reduced the water content of saturated cores by flushing with dry CO2 and subsequently vacuumizing them at a temperature of 35°C to simulate sandstones with low water content. The experimental results demonstrate that the CO2 permeability was initially high during the low differential pressure stage and remained constant as the differential pressure increased. In the carbonic acid solution injection experiment, we observed an increase in the flow rate of the solution with the continuous interaction in the cores from the Shanxi and Shihezi groups, while the Yanchang group exhibited the opposite effect. This increase in permeability can be attributed to mineral dissolution and the loss of fine particles. Conversely, the blockage of fine particles or the precipitation of dissolved minerals may lead to a decrease in permeability. After the CO2–water–rock interaction, the CO2 permeability decreased compared to before the interaction, indicating that adsorbed water, the precipitation of dissolved mineral, or pore throat blockage by fine particles could induce this permeability decrease. The impact of adsorbed water on the decrease in CO2 permeability is significant. Additionally, the CO2–water–rock interaction caused corrosion on the anorthite surface. Furthermore, calcite dispersed in connected pores displayed a more pronounced dissolution compared to cemented calcite. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ghg.2246

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:14:y:2024:i:1:p:197-208

Access Statistics for this article

More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:greenh:v:14:y:2024:i:1:p:197-208