EconPapers    
Economics at your fingertips  
 

Performance study on mixed solvent for post‐combustion carbon capture using rotating packed bed technology

Atuman Samaila Joel, Umar Farouk Aliyu, Olumide Olu Olubajo and Yusuf Makarfi Isa

Greenhouse Gases: Science and Technology, 2024, vol. 14, issue 3, 400-410

Abstract: Modeling of CO2 removal in a rotating packed bed using a mixed amine solution of piperazine and methyldiethanolamine with various molar concentration ratios was done with Aspen Plus® and dynamically linked with Intel® Visual Fortran. In addition to the mass and energy balances, all the necessary correlations for the rotating packed bed were written in Intel® Visual Fortran. The developed model was validated, and the result showed good agreement with a percentage error of less than 10%. The model was scaled‐up to absorb CO2 from the flue gas composition of a typical 6.4 MWe biomass power plant with the goal of producing net negative CO2 emissions. The effect of process parameters such as temperature, rotation speed, liquid‐gas ratio, methyl diethanolamine concentration, and piperazine concentration on capture efficiency and regeneration energy was investigated. It was discovered that increasing the rotational speed results in an improvement in the separation efficiency. Increasing the temperature of the lean solvent causes a decrease in separation efficiency, which is due to a decrease in solubility as the temperature increases. Increasing the liquid‐to‐gas ratio leads to an increase in CO2 absorption efficiency because more hydroxide ions are present to react with the CO2. Piperazine is a reactive compound and increasing its concentration in the mixed solvent leads to an increase in CO2 absorption efficiency. Finally, the results of the study demonstrated that a solvent mixture consisting of piperazine and methyldiethanolamine has the potential to be utilized in post‐combustion CO2 capture using rotating packed bed technology. © 2024 Society of Chemical Industry and John Wiley & Sons, Ltd.

Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1002/ghg.2280

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:greenh:v:14:y:2024:i:3:p:400-410

Access Statistics for this article

More articles in Greenhouse Gases: Science and Technology from Blackwell Publishing
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:greenh:v:14:y:2024:i:3:p:400-410