A more powerful subvector Anderson Rubin test in linear instrumental variables regression
Patrik Guggenberger,
Frank Kleibergen and
Sophocles Mavroeidis
Quantitative Economics, 2019, vol. 10, issue 2, 487-526
Abstract:
We study subvector inference in the linear instrumental variables model assuming homoskedasticity but allowing for weak instruments. The subvector Anderson and Rubin (1949) test that uses chi square critical values with degrees of freedom reduced by the number of parameters not under test, proposed by Guggenberger, Kleibergen, Mavroeidis, and Chen (2012), controls size but is generally conservative. We propose a conditional subvector Anderson and Rubin test that uses data‐dependent critical values that adapt to the strength of identification of the parameters not under test. This test has correct size and strictly higher power than the subvector Anderson and Rubin test by Guggenberger et al. (2012). We provide tables with conditional critical values so that the new test is quick and easy to use. Application of our method to a model of risk preferences in development economics shows that it can strengthen empirical conclusions in practice.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (25)
Downloads: (external link)
https://doi.org/10.3982/QE1116
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:10:y:2019:i:2:p:487-526
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().