The discretization filter: A simple way to estimate nonlinear state space models
Leland Farmer
Quantitative Economics, 2021, vol. 12, issue 1, 41-76
Abstract:
Existing methods for estimating nonlinear dynamic models are either highly computationally costly or rely on local approximations which often fail adequately to capture the nonlinear features of interest. I develop a new method, the discretization filter, for approximating the likelihood of nonlinear, non‐Gaussian state space models. I establish that the associated maximum likelihood estimator is strongly consistent, asymptotically normal, and asymptotically efficient. Through simulations, I show that the discretization filter is orders of magnitude faster than alternative nonlinear techniques for the same level of approximation error in low‐dimensional settings and I provide practical guidelines for applied researchers. It is my hope that the method's simplicity will make the quantitative study of nonlinear models easier for and more accessible to applied researchers. I apply my approach to estimate a New Keynesian model with a zero lower bound on the nominal interest rate. After accounting for the zero lower bound, I find that the slope of the Phillips Curve is 0.076, which is less than 1/3 of typical estimates from linearized models. This suggests a strong decoupling of inflation from the output gap and larger real effects of unanticipated changes in interest rates in post Great Recession.
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://doi.org/10.3982/QE1353
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:12:y:2021:i:1:p:41-76
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().