EconPapers    
Economics at your fingertips  
 

Linear regression with weak exogeneity

Anna Mikusheva and Mikkel Sølvsten

Quantitative Economics, 2025, vol. 16, issue 2, 367-403

Abstract: This paper studies linear time‐series regressions with many regressors. Weak exogeneity is the most used identifying assumption in time series. Weak exogeneity requires the structural error to have zero conditional expectation given present and past regressor values, allowing errors to correlate with future regressor realizations. We show that weak exogeneity in time‐series regressions with many controls may produce substantial biases and render the least squares (OLS) estimator inconsistent. The bias arises in settings with many regressors because the normalized OLS design matrix remains asymptotically random and correlates with the regression error when only weak (but not strict) exogeneity holds. This bias' magnitude increases with the number of regressors and their average autocorrelation. We propose an innovative approach to bias correction that yields a new estimator with improved properties relative to OLS. We establish consistency and conditional asymptotic Gaussianity of this new estimator and provide a method for inference.

Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://doi.org/10.3982/QE2622

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:16:y:2025:i:2:p:367-403

Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership

Access Statistics for this article

More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-07-02
Handle: RePEc:wly:quante:v:16:y:2025:i:2:p:367-403