Modeling Fetal Death and Malformation in Developmental Toxicity Studies
Paul Catalano,
Louise Ryan and
Daniel Scharfstein
Risk Analysis, 1994, vol. 14, issue 4, 629-637
Abstract:
We review approaches to dose‐response modeling and risk assessment for binary data from developmental toxicity studies. In particular, we focus on jointly modeling fetal death and malformation and use a continuation ratio formulation of the multinomial distribution to provide a model for risk. Generalized estimating equations are used to account for clustering of animals within litters. The fitted model is then used to calculate doses corresponding to a specified level of excess risk. Two methods of arriving at a lower confidence limit or Benchmark dose are illustrated and compared. We also discuss models based on single binary end points and compare our approach to a binary analysis of whether or not the animal was ‘affected’ (either dead or malformed). The models are illustrated using data from four developmental toxicity studies in EG, DEHP, TGDM, and DYME conducted through the National Toxicology Program.
Date: 1994
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.1994.tb00276.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:14:y:1994:i:4:p:629-637
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().