Recommendations on the Testing and Use of Pseudo‐Random Number Generators Used in Monte Carlo Analysis for Risk Assessment
Timothy M. Barry
Risk Analysis, 1996, vol. 16, issue 1, 93-105
Abstract:
Monte Carlo simulation requires a pseudo‐random number generator with good statistical properties. Linear congruential generators (LCGs) are the most popular and well‐studied computer method for generating pseudo‐random numbers used in Monte Carlo studies. High quality LCGs are available with sufficient statistical quality to satisfy all but the most demanding needs of risk assessors. However, because of the discrete, deterministic nature of LCGs, it is important to evaluate the randomness and uniformity of the specific pseudo‐random number subsequences used in important risk assessments. Recommended statistical tests for uniformity and randomness include the Kolmogorov‐Smirnov test, extreme values test, and the runs test, including runs above and runs below the mean tests. Risk assessors should evaluate the stability of their risk model's output statistics, paying particular attention to instabilities in the mean and variance. When instabilities in the mean and variance are observed, more stable statistics, e.g., percentiles, should be reported. Analyses should be repeated using several non‐overlapping pseudo‐random number subsequences. More simulations than those traditionally used are also recommended for each analysis.
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.1996.tb01439.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:16:y:1996:i:1:p:93-105
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().