A Methodology for Determining Interactions in Probabilistic Safety Assessment Models by Varying One Parameter at a Time
Emanuele Borgonovo
Risk Analysis, 2010, vol. 30, issue 3, 385-399
Abstract:
In risk analysis problems, the decision‐making process is supported by the utilization of quantitative models. Assessing the relevance of interactions is an essential information in the interpretation of model results. By such knowledge, analysts and decisionmakers are able to understand whether risk is apportioned by individual factor contributions or by their joint action. However, models are oftentimes large, requiring a high number of input parameters, and complex, with individual model runs being time consuming. Computational complexity leads analysts to utilize one‐parameter‐at‐a‐time sensitivity methods, which prevent one from assessing interactions. In this work, we illustrate a methodology to quantify interactions in probabilistic safety assessment (PSA) models by varying one parameter at a time. The method is based on a property of the functional ANOVA decomposition of a finite change that allows to exactly determine the relevance of factors when considered individually or together with their interactions with all other factors. A set of test cases illustrates the technique. We apply the methodology to the analysis of the core damage frequency of the large loss of coolant accident of a nuclear reactor. Numerical results reveal the nonadditive model structure, allow to quantify the relevance of interactions, and to identify the direction of change (increase or decrease in risk) implied by individual factor variations and by their cooperation.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2010.01372.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:30:y:2010:i:3:p:385-399
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().