The Economic Efficiency of Sampling Size: The Case of Beef Trim Revisited
Mark R. Powell
Risk Analysis, 2013, vol. 33, issue 3, 385-396
Abstract:
A recent paper by Ferrier and Buzby provides a framework for selecting the sample size when testing a lot of beef trim for Escherichia coli O157:H7 that equates the averted costs of recalls and health damages from contaminated meats sold to consumers with the increased costs of testing while allowing for uncertainty about the underlying prevalence of contamination. Ferrier and Buzby conclude that the optimal sample size is larger than the current sample size. However, Ferrier and Buzby's optimization model has a number of errors, and their simulations failed to consider available evidence about the likelihood of the scenarios explored under the model. After correctly modeling microbial prevalence as dependent on portion size and selecting model inputs based on available evidence, the model suggests that the optimal sample size is zero under most plausible scenarios. It does not follow, however, that sampling beef trim for E. coli O157:H7, or food safety sampling more generally, should be abandoned. Sampling is not generally cost effective as a direct consumer safety control measure due to the extremely large sample sizes required to provide a high degree of confidence of detecting very low acceptable defect levels. Food safety verification sampling creates economic incentives for food producing firms to develop, implement, and maintain effective control measures that limit the probability and degree of noncompliance with regulatory limits or private contract specifications.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/risa.12027
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:33:y:2013:i:3:p:385-396
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().