Intake Fraction Variability Between Air Pollution Emission Sources Inside an Urban Area
Marko Tainio,
Piotr Holnicki,
Miranda M. Loh and
Zbigniew Nahorski
Risk Analysis, 2014, vol. 34, issue 11, 2021-2034
Abstract:
The cost‐effective mitigation of adverse health effects caused by air pollution requires information on the contribution of different emission sources to exposure. In urban areas the exposure potential of different sources may vary significantly depending on emission height, population density, and other factors. In this study, we quantified this intraurban variability by predicting intake fraction (iF) for 3,066 emission sources in Warsaw, Poland. iF describes the fraction of the pollutant that is inhaled by people in the study area. We considered the following seven pollutants: particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a] pyrene (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). Emissions for these pollutants were grouped into four emission source categories (Mobile, Area, High Point, and Other Point sources). The dispersion of the pollutants was predicted with the CALPUFF dispersion model using the year 2005 emission rate data and meteorological records. The resulting annual average concentrations were combined with population data to predict the contribution of each individual source to population exposure. The iFs for different pollutant‐source category combinations varied between 51 per million (PM from Mobile sources) and 0.013 per million (sulfate PM from High Point sources). The intraurban iF variability for Mobile sources primary PM emission was from 4 per million to 100 per million with the emission‐weighted iF of 44 per million. These results propose that exposure due to intraurban air pollution emissions could be decreased more effectively by specifically targeting sources with high exposure potency rather than all sources.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/risa.12221
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:34:y:2014:i:11:p:2021-2034
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().