EconPapers    
Economics at your fingertips  
 

Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models

Yanlin Tang, Liya Xiang and Zhongyi Zhu

Risk Analysis, 2014, vol. 34, issue 6, 1112-1127

Abstract: Risk factor selection is very important in the insurance industry, which helps precise rate making and studying the features of high‐quality insureds. Zero‐inflated data are common in insurance, such as the claim frequency data, and zero‐inflation makes the selection of risk factors quite difficult. In this article, we propose a new risk factor selection approach, EM adaptive LASSO, for a zero‐inflated Poisson regression model, which combines the EM algorithm and adaptive LASSO penalty. Under some regularity conditions, we show that, with probability approaching 1, important factors are selected and the redundant factors are excluded. We investigate the finite sample performance of the proposed method through a simulation study and the analysis of car insurance data from SAS Enterprise Miner database.

Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/risa.12162

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:34:y:2014:i:6:p:1112-1127

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:34:y:2014:i:6:p:1112-1127