A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension
Siming You and
Man Pun Wan
Risk Analysis, 2015, vol. 35, issue 8, 1488-1502
Abstract:
A new risk assessment scheme was developed to quantify the impact of resuspension to infection transmission indoors. Airborne and surface pathogenic particle concentration models including the effect of two major resuspension scenarios (airflow‐induced particle resuspension [AIPR] and walking‐induced particle resuspension [WIPR]) were derived based on two‐compartment mass balance models and validated against experimental data found in the literature. The inhalation exposure to pathogenic particles was estimated using the derived airborne concentration model, and subsequently incorporated into a dose‐response model to assess the infection risk. Using the proposed risk assessment scheme, the influences of resuspension towards indoor infection transmission were examined by two hypothetical case studies. In the case of AIPR, the infection risk increased from 0 to 0.54 during 0–0.5 hours and from 0.54 to 0.57 during 0.5–4 hours. In the case of WIPR, the infection risk increased from 0 to 0.87 during 0–0.5 hours and from 0.87 to 1 during 0.5–4 hours. Sensitivity analysis was conducted based on the design‐of‐experiments method and showed that the factors that are related to the inspiratory rate of viable pathogens and pathogen virulence have the most significant effect on the infection probability under the occurrence of AIPR and WIPR. The risk assessment scheme could serve as an effective tool for the risk assessment of infection transmission indoors.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/risa.12350
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:35:y:2015:i:8:p:1488-1502
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().