EconPapers    
Economics at your fingertips  
 

Machine Learning Methods as a Tool for Predicting Risk of Illness Applying Next‐Generation Sequencing Data

Patrick Murigu Kamau Njage, Clementine Henri, Pimlapas Leekitcharoenphon, Michel‐Yves Mistou, Rene S. Hendriksen and Tine Hald

Risk Analysis, 2019, vol. 39, issue 6, 1397-1413

Abstract: Next‐generation sequencing (NGS) data present an untapped potential to improve microbial risk assessment (MRA) through increased specificity and redefinition of the hazard. Most of the MRA models do not account for differences in survivability and virulence among strains. The potential of machine learning algorithms for predicting the risk/health burden at the population level while inputting large and complex NGS data was explored with Listeria monocytogenes as a case study. Listeria data consisted of a percentage similarity matrix from genome assemblies of 38 and 207 strains of clinical and food origin, respectively. Basic Local Alignment (BLAST) was used to align the assemblies against a database of 136 virulence and stress resistance genes. The outcome variable was frequency of illness, which is the percentage of reported cases associated with each strain. These frequency data were discretized into seven ordinal outcome categories and used for supervised machine learning and model selection from five ensemble algorithms. There was no significant difference in accuracy between the models, and support vector machine with linear kernel was chosen for further inference (accuracy of 89% [95% CI: 68%, 97%]). The virulence genes FAM002725, FAM002728, FAM002729, InlF, InlJ, Inlk, IisY, IisD, IisX, IisH, IisB, lmo2026, and FAM003296 were important predictors of higher frequency of illness. InlF was uniquely truncated in the sequence type 121 strains. Most important risk predictor genes occurred at highest prevalence among strains from ready‐to‐eat, dairy, and composite foods. We foresee that the findings and approaches described offer the potential for rethinking the current approaches in MRA.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://doi.org/10.1111/risa.13239

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:39:y:2019:i:6:p:1397-1413

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:39:y:2019:i:6:p:1397-1413