A Comparison of Evolutionary and Coevolutionary Search
Ludo Pagie and
Melanie Mitchell
Working Papers from Santa Fe Institute
Abstract:
Previous work on coevolutionary search has demonstrated both successful and unsuccessful applications. As a step in explaining what factors lead to success or failure, we present a comparative study of an evolutionary and a coevolutionary search model. In the latter model, strategies for solving a problem coevolve with training cases. We find that the coevolutionary model has a relatively large efficacy: 86 out of 100 (86%) of the simulations produce high quality strategies. In contrast, the evolutionary model has a very low efficacy: a high quality strategy is found in only two out of 100 runs (2%). We show that the increased efficacy in the coevolutionary model results from the direct exploitation of low quality strategies by the population of training cases. We also present evidence that the generality of the high-quality strategies can suffer as a result of this same exploitation.
Keywords: Genetic algorithms; evolutionary computation; coevolution; and cellular automata (search for similar items in EconPapers)
Date: 2002-01
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:02-01-002
Access Statistics for this paper
More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().