EconPapers    
Economics at your fingertips  
 

Thermodynamic Depth of Causal States: When Paddling Around in Occam's Pool Shallowness Is a Virtue

James P. Crutchfield and Cosma Rohilla Shalizi

Working Papers from Santa Fe Institute

Abstract: Thermodynamic depth is an appealing but flawed complexity measure. It depends on a set of macroscopic states for a system, but neither its original introduction by Lloyd and Pagels nor any follow-up work has considered how to select these states. Depth, therefore, is at root subjective. Computational mechanics provides a definition for a system'[s minimal, necessary causal states and a procedure for finding them. We show that the rate of increase in thermodynamic depth, or "dive," is the system's reverse-time Shannon entropy rate, and so depth only measures degrees of macroscopic randomness, not structure. We redefine the depth in terms of the causal state representation--- epsilon-machines---and show that this representation gives the minimum dive consistent with accurate predition. Thus, epsilon-machines are optimally shallow.

Date: 1998-06
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wop:safiwp:98-06-047

Access Statistics for this paper

More papers in Working Papers from Santa Fe Institute Contact information at EDIRC.
Bibliographic data for series maintained by Thomas Krichel ().

 
Page updated 2025-03-22
Handle: RePEc:wop:safiwp:98-06-047