Key Borrowers Detected by the Intensities of Their Interactions
Fuad Aleskerov,
Irina Andrievskaya,
Alisa Nikitina and
Sergey Shvydun
Chapter 9 in Handbook of Financial Econometrics, Mathematics, Statistics, and Machine Learning:(In 4 Volumes), 2020, pp 355-389 from World Scientific Publishing Co. Pte. Ltd.
Abstract:
We propose a novel method to estimate the level of interconnectedness of a financial institution or system, as the measures currently suggested in the literature do not fully take into consideration an important aspect of interconnectedness — group interactions of agents. Our approach is based on the power index and centrality analysis and is employed to find a key borrower in a loan market. It has three distinctive features: it considers long-range interactions among agents, agents’ attributes and a possibility of an agent to be affected by a group of other agents. This approach allows us to identify systemically important elements which cannot be detected by classical centrality measures or other indices. The proposed method is employed to analyze the banking foreign claims as of 1Q 2015. Using our approach, we detect two types of key borrowers (a) major players with high ratings and positive credit history; (b) intermediary players, which have a great scale of financial activities through the organization of favorable investment conditions and positive business climate.
Keywords: Financial Econometrics; Financial Mathematics; Financial Statistics; Financial Technology; Machine Learning; Covariance Regression; Cluster Effect; Option Bound; Dynamic Capital Budgeting; Big Data (search for similar items in EconPapers)
JEL-codes: C01 C1 G32 (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.worldscientific.com/doi/pdf/10.1142/9789811202391_0009 (application/pdf)
https://www.worldscientific.com/doi/abs/10.1142/9789811202391_0009 (text/html)
Ebook Access is available upon purchase.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:wschap:9789811202391_0009
Ordering information: This item can be ordered from
Access Statistics for this chapter
More chapters in World Scientific Book Chapters from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().