High wage workers and low wage firms: negative assortative matching or limited mobility bias?
M. J. Andrews,
L. Gill,
Thorsten Schank and
Richard Upward
Journal of the Royal Statistical Society Series A, 2008, vol. 171, issue 3, 673-697
Abstract:
Summary. In the empirical literature on assortative matching using linked employer–employee data, unobserved worker quality appears to be negatively correlated with unobserved firm quality. We show that this can be caused by standard estimation error. We develop formulae that show that the estimated correlation is biased downwards if there is true positive assortative matching and when any conditioning covariates are uncorrelated with the firm and worker fixed effects. We show that this bias is bigger the fewer movers there are in the data, which is ‘limited mobility bias’. This result applies to any two‐way (or higher) error components model that is estimated by fixed effects methods. We apply these bias corrections to a large German linked employer–employee data set. We find that, although the biases can be considerable, they are not sufficiently large to remove the negative correlation entirely.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (309)
Downloads: (external link)
https://doi.org/10.1111/j.1467-985X.2007.00533.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:jorssa:v:171:y:2008:i:3:p:673-697
Ordering information: This journal article can be ordered from
http://ordering.onli ... 1111/(ISSN)1467-985X
Access Statistics for this article
Journal of the Royal Statistical Society Series A is currently edited by A. Chevalier and L. Sharples
More articles in Journal of the Royal Statistical Society Series A from Royal Statistical Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().