Economics at your fingertips  

On the impact of outlier filtering on the electricity price forecasting accuracy

Dmitriy Afanasyev and Elena A. Fedorova

Applied Energy, 2019, vol. 236, issue C, 196-210

Abstract: Increasing the accuracy of short-term electricity price forecasting allows day-ahead power market participants to obtain a positive economic effect by bidding close to the equilibrium price. However the electricity price time-series is generally infested with extreme values due to high price volatility. This paper discusses the impact of outlier filtering on forecasting accuracy based on a recently introduced seasonal component autoregressive model. We consider such methods of outlier detection (with a priori defined cut-off parameter) as threshold, standard deviation, percentage, recursive, and moving filter on prices. It is shown that such data pre-processing often leads to the forecasting accuracy gain while the error decrease (relative to the approach without filtering) in a number of cases may reach 1.8–1.9% of the average weekly price (in absolute values). For an a priori defined cut-off parameter, the simple threshold and standard deviation filter on prices outperform other considered methods, and yield to the accuracy gain in 63% and 67% of cases, correspondingly. At the same time, in case of the out-of-sample filter parameter grid-optimization all of the methods demonstrate comparable prediction power (equal to the marginal performance). But, practically speaking, such optimization is time-consuming and cannot be carried out on unavailable future data. As an competitive alternative, we propose a combined filter on prices based on a committee machine which uses the results of individual non-optimized algorithms and is not time-consuming, but gives accuracy comparable to the best one obtained for each of the studied electricity markets and leads to forecast gain in 63% of the considered cases.

Keywords: Electricity price forecasting; Outlier filtering; Committee machine; Model confidence set; Long-term trend-seasonal component (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11) Track citations by RSS feed

Downloads: (external link)
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2018.11.076

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

Page updated 2022-09-28
Handle: RePEc:eee:appene:v:236:y:2019:i:c:p:196-210