Framework for estimation of the direct rebound effect for residential photovoltaic systems
Shahaboddin H. Toroghi and
Matthew Oliver
Applied Energy, 2019, vol. 251, issue C, -
Abstract:
Over the past two decades the market for residential rooftop photovoltaic (PV) systems has grown substantially due mainly to declining costs—a trend that is expected to continue. One drawback of PV system diffusion is the potential for a rebound effect, a well-known economic response through which potential energy savings are partially offset by increased demand resulting from lower energy costs. Our work differs from the existing literature, however, because the rebound effect associated with the adoption of rooftop PV is due not to an improvement in energy efficiency, but to the availability of a zero-marginal cost alternative to grid electricity. This paper develops a novel method for estimating the rebound effect for rooftop PV based on economic and geographic information systems modeling. The method is illustrated through a numerical example, using neighborhood-level data from Fulton County, Georgia, USA. We discuss possible applications of our proposed method, which include (i) enhancing the predictive capability for conventional power grid managers in balancing forecasted demand with dispatchable supply, and (ii) aiding policy makers in designing policies to mitigate the rebound effect associated with solar PV adoption.
Keywords: Rebound effect; Photovoltaic system; GIS modeling; Energy consumption; LiDAR; Renewable intermittency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261919310657
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:251:y:2019:i:c:74
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2019.113391
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().