Distributed voltage control for multi-feeder distribution networks considering transmission network voltage fluctuation based on robust deep reinforcement learning
Zhi Wu,
Yiqi Li,
Xiao Zhang,
Shu Zheng and
Jingtao Zhao
Applied Energy, 2025, vol. 379, issue C, No S0306261924023687
Abstract:
In the multi-feeder distribution network, the power balance between photovoltaics generations and load demands across regions is more complex. To solve the above problems, this paper proposes a multi-agent distributed voltage control strategy based on robust deep reinforcement learning to reduce voltage deviation. The whole multi-feeder distribution network is divided into a main agent and several sub-agents, and a multi-agent distributed voltage control model considering the transmission network voltage fluctuations and the corresponding power fluctuations is established. Based on the information uploaded by sub-agents, the main agent models the uncertainty of the transmission network voltage fluctuations and the corresponding power fluctuations as a disturbance to the state, and a RDRL method is employed to determine the tap position of on-load tap changer. Furtherly, each sub-agent uses the second-order cone relaxation technique to adjust the reactive power outputs of the inverters on each feeder. The effectiveness of the proposed method has been verified in two real-world multi-feeder systems. The results show that the proposed method can achieve millisecond-level decision-making, with a voltage deviation only 1.28 % higher than the global optimal results, achieving near-optimal control. The proposed method also demonstrates robustness in handling transmission network uncertainties and partial measurement loss.
Keywords: Multi-feeder distribution network; Voltage control; Multiple agents; Robust deep reinforcement learning (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261924023687
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:379:y:2025:i:c:s0306261924023687
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2024.124984
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().