EconPapers    
Economics at your fingertips  
 

Multi timescale battery modeling: Integrating physics insights to data-driven model

Tushar Desai, Alexander J. Gallo and Riccardo M.G. Ferrari

Applied Energy, 2025, vol. 393, issue C, No S0306261925007706

Abstract: Developing accurate models for batteries, capturing ageing effects and nonlinear behaviors, is critical for the development of efficient and effective performance. Due to the inherent difficulties in developing physics-based models, data-driven techniques have been gaining popularity. However, most machine learning methods are black boxes, lacking interpretability and requiring large amounts of labeled data. In this paper, we propose a physics-informed encoder–decoder model that learns from unlabeled data to separate slow-changing battery states, such as state of charge (SOC) and state of health (SOH), from fast transient responses, thereby increasing interpretability compared to conventional methods. By integrating physics-informed loss functions and modified architectures, we map the encoder output to quantifiable battery states, without needing explicit SOC and SOH labels. Our proposed approach is validated on a lithium-ion battery ageing dataset capturing dynamic discharge profiles that aim to mimic electric vehicle driving profiles. The model is trained and validated on sparse intermittent cycles (6 %–7 % of all cycles), accurately estimating SOC and SOH while providing accurate multistep ahead voltage predictions across single and multiple-cell based training scenarios.

Keywords: Encoder–decoder; Physics informed machine learning; Multi timescale battery modeling; Sparse-unlabeled data (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261925007706
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007706

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2025.126040

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-06-17
Handle: RePEc:eee:appene:v:393:y:2025:i:c:s0306261925007706