EconPapers    
Economics at your fingertips  
 

Oil price forecasting using gene expression programming and artificial neural networks

Mohamed M. Mostafa and Ahmed El-Masry

Economic Modelling, 2016, vol. 54, issue C, 40-53

Abstract: This study aims to forecast oil prices using evolutionary techniques such as gene expression programming (GEP) and artificial neural network (NN) models to predict oil prices over the period from January 2, 1986 to June 12, 2012. Autoregressive integrated moving average (ARIMA) models are employed to benchmark evolutionary models. The results reveal that the GEP technique outperforms traditional statistical techniques in predicting oil prices. Further, the GEP model outperforms the NN and the ARIMA models in terms of the mean squared error, the root mean squared error and the mean absolute error. Finally, the GEP model also has the highest explanatory power as measured by the R-squared statistic. The results of this study have important implications for both theory and practice.

Keywords: Oil price prediction; Gene expression programming; Neural networks; ARIMA (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (36)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999315004101
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:54:y:2016:i:c:p:40-53

DOI: 10.1016/j.econmod.2015.12.014

Access Statistics for this article

Economic Modelling is currently edited by S. Hall and P. Pauly

More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecmode:v:54:y:2016:i:c:p:40-53