Dealing with small sample bias in post-crisis samples
Makram El-Shagi
Economic Modelling, 2017, vol. 65, issue C, 1-8
Abstract:
In this paper, we demonstrate that using finite sample correction bootstrapping techniques is advisable in samples that cover less than two complete business cycles, even when high-frequency data seemingly provide a sufficient number of observations to overcome the small sample bias. This is particularly relevant in the current research environment. Because the recent financial crisis is considered as a structural break, research on current problems is often conducted using post-crisis data. That is, the available samples cover only a few years of data, often spanning only one business cycle or even less. We provide ample simulation-based evidence that samples of daily or monthly dynamic data covering periods of this magnitude are prone to a fairly substantial bias. Moreover, we are able to show that standard bootstrap-based bias correction techniques still work in those cases.
Keywords: Finite sample; Short period (search for similar items in EconPapers)
JEL-codes: C18 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0264999316304035
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecmode:v:65:y:2017:i:c:p:1-8
DOI: 10.1016/j.econmod.2017.04.004
Access Statistics for this article
Economic Modelling is currently edited by S. Hall and P. Pauly
More articles in Economic Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().