Identification and estimation of a triangular model with multiple endogenous variables and insufficiently many instrumental variables
Liquan Huang,
Umair Khalil () and
Neşe Yıldız
Journal of Econometrics, 2019, vol. 208, issue 2, 346-366
Abstract:
We develop a novel identification method for a partially linear model with multiple endogenous variables of interest but a single instrumental variable, which could even be binary. We present an easy-to-implement consistent estimator for the parametric part. This estimator retains n-convergence rate and asymptotic normality even though we have a generated regressor in our setup. The nonparametric part of the model is also identified. We also outline how our identification strategy can be extended to a fully non-parametric model. Finally, we use our methods to assess the impact of smoking during pregnancy on birth weight.
Keywords: Identification; Multiple endogenous variables; Control function approach (search for similar items in EconPapers)
JEL-codes: C13 C14 C31 C36 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407618301854
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:208:y:2019:i:2:p:346-366
DOI: 10.1016/j.jeconom.2017.10.009
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().