EconPapers    
Economics at your fingertips  
 

Double machine learning with gradient boosting and its application to the Big N audit quality effect

Jui-Chung Yang, Hui-Ching Chuang and Chung-Ming Kuan

Journal of Econometrics, 2020, vol. 216, issue 1, 268-283

Abstract: In this paper, we study the double machine learning (DML) approach of Chernozhukov et al. (2018) for estimating average treatment effect and apply this approach to examine the Big N audit quality effect in the accounting literature. This approach relies on machine learning methods and is suitable when a high dimensional nuisance function with many covariates is present in the model. This approach does not suffer from the “regularization bias” when a learning method with a proper convergence rate is used. We demonstrate by simulations that, for the DML approach, the gradient boosting method is fairly robust and to be preferred to other methods, such as regression tree, random forest, support vector regression machine, and the conventional Nadaraya–Watson nonparametric estimator. We then apply the DML approach with gradient boosting to estimate the Big N effect. We find that Big N auditors have a positive effect on audit quality and that this effect is not only statistically significant but also economically important. We further show that, in contrast to the results of propensity score matching, our estimates of said effect are quite robust to the hyper-parameters in the gradient boosting algorithm.

Keywords: Audit quality; Average treatment effect; Big N effect; Double machine learning; Gradient boosting; Performance-matched discretionary accruals (search for similar items in EconPapers)
JEL-codes: C14 C31 M42 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407620300245
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:216:y:2020:i:1:p:268-283

DOI: 10.1016/j.jeconom.2020.01.018

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2024-07-01
Handle: RePEc:eee:econom:v:216:y:2020:i:1:p:268-283