EconPapers    
Economics at your fingertips  
 

Efficient closed-form estimation of large spatial autoregressions

Abhimanyu Gupta

Journal of Econometrics, 2023, vol. 232, issue 1, 148-167

Abstract: Newton-step approximations to pseudo maximum likelihood estimates of spatial autoregressive models with a large number of parameters are examined, in the sense that the parameter space grows slowly as a function of sample size. These have the same asymptotic efficiency properties as maximum likelihood under Gaussianity but are of closed form. Hence they are computationally simple and free from compactness assumptions, thereby avoiding two notorious pitfalls of implicitly defined estimates of large spatial autoregressions. When commencing from an initial least squares estimate, the Newton step can also lead to weaker regularity conditions for a central limit theorem than some extant in the literature. A simulation study demonstrates excellent finite sample gains from Newton iterations, especially in large multiparameter models for which grid search is costly. A small empirical illustration shows improvements in estimation precision with real data.

Keywords: Spatial autoregression; Efficiency; Many parameters; Networks (search for similar items in EconPapers)
JEL-codes: C21 C31 C33 C36 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407621001597
Full text for ScienceDirect subscribers only

Related works:
Working Paper: Efficient closed-form estimation of large spatial autoregressions (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:232:y:2023:i:1:p:148-167

DOI: 10.1016/j.jeconom.2021.05.005

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:232:y:2023:i:1:p:148-167