Efficient closed-form estimation of large spatial autoregressions
Abhimanyu Gupta
Papers from arXiv.org
Abstract:
Newton-step approximations to pseudo maximum likelihood estimates of spatial autoregressive models with a large number of parameters are examined, in the sense that the parameter space grows slowly as a function of sample size. These have the same asymptotic efficiency properties as maximum likelihood under Gaussianity but are of closed form. Hence they are computationally simple and free from compactness assumptions, thereby avoiding two notorious pitfalls of implicitly defined estimates of large spatial autoregressions. For an initial least squares estimate, the Newton step can also lead to weaker regularity conditions for a central limit theorem than those extant in the literature. A simulation study demonstrates excellent finite sample gains from Newton iterations, especially in large multiparameter models for which grid search is costly. A small empirical illustration shows improvements in estimation precision with real data.
Date: 2020-08, Revised 2021-05
New Economics Papers: this item is included in nep-ecm and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2008.12395 Latest version (application/pdf)
Related works:
Journal Article: Efficient closed-form estimation of large spatial autoregressions (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2008.12395
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().