Policy evaluation with multiple instrumental variables
Magne Mogstad,
Alexander Torgovitsky and
Christopher Walters
Journal of Econometrics, 2024, vol. 243, issue 1
Abstract:
Marginal treatment effect methods are widely used for causal inference and policy evaluation with instrumental variables. However, they fundamentally rely on the well-known monotonicity (threshold-crossing) condition on treatment choice behavior. This condition cannot hold with multiple instruments unless treatment choice is effectively homogeneous. We develop a new marginal treatment effect framework under a weaker, partial monotonicity condition. The partial monotonicity condition is implied by standard choice theory and allows for rich unobserved heterogeneity even in the presence of multiple instruments. The new framework can be viewed as having multiple different choice models for the same observed treatment variable, all of which must be consistent with the data and with each other. Using this framework, we develop a methodology for partial identification of clearly stated, policy-relevant target parameters while allowing for a wide variety of nonparametric shape restrictions and parametric functional form assumptions. We show how the methodology can be used to combine multiple instruments together to yield more informative empirical conclusions than one would obtain by using each instrument separately. The methodology provides a blueprint for extracting and aggregating information from multiple controlled or natural experiments while still allowing for rich unobserved heterogeneity in both treatment effects and choice behavior.
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407624000642
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Policy Evaluation with Multiple Instrumental Variables (2020) 
Working Paper: Policy Evaluation with Multiple Instrumental Variables (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:243:y:2024:i:1:s0304407624000642
DOI: 10.1016/j.jeconom.2024.105718
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().