Stochastic scheduling to minimize expected maximum lateness
Xianyi Wu () and
Xian Zhou
European Journal of Operational Research, 2008, vol. 190, issue 1, 103-115
Abstract:
This paper is concerned with the problems in scheduling a set of jobs associated with random due dates on a single machine so as to minimize the expected maximum lateness in stochastic environment. This is a difficult problem and few efforts have been reported on its solution in the literature. In this paper, we first derive a deterministic equivalent to the expected maximum lateness and then propose a dynamic programming algorithm to obtain the optimal solutions. The procedures to compute optimal solutions are initially developed in the case of deterministic processing times, and then extended to stochastic processing times following arbitrary probability distributions. Moreover, several heuristic rules are suggested to compute near-optimal solutions, which are shown to be highly efficient and accurate by computer-based experiments.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00565-6
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:190:y:2008:i:1:p:103-115
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().