EconPapers    
Economics at your fingertips  
 

Inference in the spatial autoregressive efficiency model with an application to Dutch dairy farms

Ioannis Skevas

European Journal of Operational Research, 2020, vol. 283, issue 1, 356-364

Abstract: This article extends the conventional spatial autoregressive efficiency model by including firm characteristics that may impact efficiency. This extension allows performing the typical inference in spatial autoregressive models that involves the derivation of direct and indirect marginal effects, with the latter revealing the nature and magnitude of spatial spillovers. Furthermore, this study accounts for the endogeneity of the spatial autoregressive efficiency model using a lag spatial lag efficiency component, which makes inference to be performed in a long-run framework. The case study concerns specialized Dutch dairy farms observed over the period 2009–2016 and for which exact geographical coordinates of latitude and longitude are available. The results reveal that the efficiency scores are spatially dependent. The derived marginal effects further suggest that farmers’ long-run efficiency is driven by changes in both their own and their neighbors’ characteristics, highlighting the existence of motivation and learning domino effects between neighboring producers.

Keywords: OR in agriculture; Efficiency; Spatial autoregressive model; Marginal effects; Dairy farms (search for similar items in EconPapers)
JEL-codes: C11 C23 D22 D24 Q12 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719308689
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:283:y:2020:i:1:p:356-364

DOI: 10.1016/j.ejor.2019.10.033

Access Statistics for this article

European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati

More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-23
Handle: RePEc:eee:ejores:v:283:y:2020:i:1:p:356-364