A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem
Jakob Snauwaert and
Mario Vanhoucke
European Journal of Operational Research, 2023, vol. 307, issue 1, 1-19
Abstract:
This paper studies and analyses the multi-skilled resource-constrained project scheduling problem (MSRCPSP). We present a new classification scheme based on an existing classification scheme for project scheduling problems. This allows researchers to classify all multi-skilled project scheduling problems and its extensions. Furthermore, we propose a new data generation procedure for the MSRCPSP and introduce multiple artificial datasets for varying research purposes. The new datasets are generated based on new multi-skilled resource parameters and are compared to existing benchmark datasets in the literature. A set of 7 empirical multi-skilled project instances from software and railway construction companies are collected in order to validate the quality of the artificial datasets. Solutions are obtained through a genetic algorithm and by solving a mixed-integer linear programming formulation with CPLEX 12.6. The hardness of the multi-skilled project instances is investigated in the computational experiments. An experimental analysis studies the impact of skill availability, workforce size and multi-skilling on the makespan of the project.
Keywords: Project scheduling; Resource-constrained scheduling; Skills (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221722004519
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:307:y:2023:i:1:p:1-19
DOI: 10.1016/j.ejor.2022.05.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().