Experimental characterization and comparison of performance parameters of S-rotors for standalone wind power system
Bilawal A. Bhayo and
Hussain Al-Kayiem
Energy, 2017, vol. 138, issue C, 752-763
Abstract:
An open wind flow test of seven Savonius models was conducted to explore the influence of design parameters on the performance and starting characteristics. The seven rotors are coded as Model 1 to Model 7, with various blade designs, number of blades, and number of stages. Results demonstrated that Model 1, a modified two-blade single-stage conventional S-rotor, has the highest power coefficient of 0.26. Model 1 also exhibited an improved maximum power coefficient of about 47% than the previously reported in the literature due to increasing of the aspect ratio from 0.77 to 2.0. The power coefficient of double-stage Savonius-rotors was found to be lower by about 11%–20% than the identical design single-stage S-rotors. The static torque assessment exhibited that double-stage rotors and rotor with more than three blades do not have any negative torque angle position. Nonetheless, the single-stage Savonius-rotor, even with three blades, has few negative torque angles. The study suggests that Model 2, modified double-stage rotor and Model 5, conventional double stage rotor with overlap ratio of 0.2, are most suitable rotors for stand-alone wind power systems, where they have not shown any negative torque angle, in spite that the power coefficient can be sacrificed for the sake of improved starting ability.
Keywords: Savonius rotor; S-rotor; Wind turbine; Wind energy; Vertical axis wind turbine (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217313117
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:138:y:2017:i:c:p:752-763
DOI: 10.1016/j.energy.2017.07.128
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().