EconPapers    
Economics at your fingertips  
 

Forecasting based on an ensemble Autoregressive Moving Average - Adaptive neuro - Fuzzy inference system – Neural network - Genetic Algorithm Framework

Francisco Prado, Marcel Minutolo and Werner Kristjanpoller

Energy, 2020, vol. 197, issue C

Abstract: This paper proposes a novel ensemble methodology comprising an auto regressive integrated moving average, artificial neural network, fuzzy inference system model, adaptive neuro fuzzy inference system, support vector regression, extreme machine learning, and genetic algorithm to forecast aggregated, long-term energy demand. After comparing the framework with several benchmark methods by the loss functions mean squared error and mean absolute percentage error, and applying a model confidence set this work suggests that the proposed method improves forecasting accuracy over previous approaches. The proposed approach resulted in a mean squared error decrease of 22.3% and mean absolute percentage error by 33.1% with respect to the best artificial intelligence and econometric models in a sample study. Post-processing optimization of the forecasting ensemble in this methodology improves prediction accuracy. The approach developed herein provides an addition to the field for how hybridized models and augmented forecasting accuracy can be improved. Continued improvements to forecasting techniques are extremely important especially in areas where there are upper bound constraints on supply and lower bound on minimum operation levels.

Keywords: Genetic algorithm; Energy consumption forecasting; Artificial neural network; Adaptive neuro fuzzy inference system (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544220302668
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302668

DOI: 10.1016/j.energy.2020.117159

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:197:y:2020:i:c:s0360544220302668