EconPapers    
Economics at your fingertips  
 

Using methods from machine learning to evaluate behavioral models of choice under risk and ambiguity

Alexander Peysakhovich and Jeffrey Naecker

Journal of Economic Behavior & Organization, 2017, vol. 133, issue C, 373-384

Abstract: How can behavioral science incorporate tools from machine learning (ML)? We propose that ML models can be used as upper bounds for the “explainable” variance in a given data set and thus serve as upper bounds for the potential power of a theory. We demonstrate this method in the domain of uncertainty. We ask over 600 individuals to make a total of 6000 choices with randomized parameters and compare standard economic models to ML models. In the domain of risk, a version of expected utility that allows for non-linear probability weighting (as in cumulative prospect theory) and individual-level parameters performs as well out-of-sample as ML techniques. By contrast, in the domain of ambiguity, two of the most widely studied models (a linear version of maximin preferences and second order expected utility) fail to compete with the ML methods. We open the “black boxes” of the ML methods and show that under risk we “rediscover” expected utility with probability weighting. However, in the case of ambiguity the form of ambiguity aversion implied by our ML models suggests that there is gain from theoretical work on a portable model of ambiguity aversion. Our results highlight ways in which behavioral scientists can incorporate ML techniques in their daily practice to gain genuinely new insights.

Keywords: Behavioral economics; Machine learning; Risk; Ambiguity; Decision-making (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167268116301846
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:jeborg:v:133:y:2017:i:c:p:373-384

DOI: 10.1016/j.jebo.2016.08.017

Access Statistics for this article

Journal of Economic Behavior & Organization is currently edited by Houser, D. and Puzzello, D.

More articles in Journal of Economic Behavior & Organization from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:jeborg:v:133:y:2017:i:c:p:373-384