The structure of strategy-proof random social choice functions over product domains and lexicographically separable preferences
Shurojit Chatterji,
Souvik Roy () and
Arunava Sen
Journal of Mathematical Economics, 2012, vol. 48, issue 6, 353-366
Abstract:
We characterize the class of dominant-strategy incentive-compatible (or strategy-proof) random social choice functions in the standard multi-dimensional voting model where voter preferences over the various dimensions (or components) are lexicographically separable. We show that these social choice functions (which we call generalized random dictatorships) are induced by probability distributions on voter sequences of length equal to the number of components. They induce a fixed probability distribution on the product set of voter peaks. The marginal probability distribution over every component is a random dictatorship. Our results generalize the classic random dictatorship result in Gibbard (1977) and the decomposability results for strategy-proof deterministic social choice functions for multi-dimensional models with separable preferences obtained in LeBreton and Sen (1999).
Keywords: Strategy-proofness; Lexicographically separable preferences; Generalized random dictatorship (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406812000547
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:48:y:2012:i:6:p:353-366
DOI: 10.1016/j.jmateco.2012.08.001
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().