The optimal entry fee-prize ratio in Tullock contests
Hao Jia and
Ching-jen Sun
Journal of Mathematical Economics, 2021, vol. 96, issue C
Abstract:
We analyze a three-stage game where an organizer sets an entry fee for a Tullock contest event, and a finite population of homogeneous agents simultaneously decide whether to participate or not. We show that in the unique symmetric subgame perfect Nash equilibrium, the larger the population size, the lower the probability the agents enter the contest, but the organizer’s optimal entry fee-prize ratio could either increase or decrease with the population size. When the population size approaches infinity, the number of contestants converges to a Poisson distributed random variable.
Keywords: Contest success function; Optimal entry fee-prize ratio; Endogenous entry; Uncertain number of contestants (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304406821000781
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:mateco:v:96:y:2021:i:c:s0304406821000781
DOI: 10.1016/j.jmateco.2021.102515
Access Statistics for this article
Journal of Mathematical Economics is currently edited by Atsushi (A.) Kajii
More articles in Journal of Mathematical Economics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().