Perturbation theory for non-axial molecular fluids
S. Singh,
U.P. Singh and
Y. Singh
Authors registered in the RePEc Author Service: Shyam Sunder Singh
Physica A: Statistical Mechanics and its Applications, 1983, vol. 121, issue 3, 563-575
Abstract:
The thermodynamic perturbation theory in which all angle-dependent interactions are considered as a perturbation of the central potential is applied to study the equilibrium properties of a fluid composed of non-axial molecules. The influence of a large number of anisotropic pair and three-body non-additive interactions have been taken into account. Using the same set of force parameters the calculation is made for gaseous pressure second and third virial coefficients and liquid phase thermodynamic properties (Helmholtz free-energy, configurational energy, pressure and entropy). It is shown that the non-axial approximation is an improvement over the axial one. Excellent agreement between theory and experiment is obtained for ethylene.
Date: 1983
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0378437183900110
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:121:y:1983:i:3:p:563-575
DOI: 10.1016/0378-4371(83)90011-0
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().