Random matrix theory and the failure of macro-economic forecasts
Paul Ormerod () and
Craig Mounfield
Physica A: Statistical Mechanics and its Applications, 2000, vol. 280, issue 3, 497-504
Abstract:
By scientific standards, the accuracy of short-term economic forecasts has been poor, and shows no sign of improving over time. We form a delay matrix of time-series data on the overall rate of growth of the economy, with lags spanning the period over which any regularity of behaviour is postulated by economists to exist. We use methods of random matrix theory to analyse the correlation matrix of the delay matrix. This is done for annual data from 1871 to 1994 for 17 economies, and for post-war quarterly data for the US and the UK. The properties of the eigenvalues and eigenvectors of these correlation matrices are similar, though not identical, to those implied by random matrix theory. This suggests that the genuine information content in economic growth data is low, and so forecasting failure arises from inherent properties of the data.
Keywords: Econophysics; Random matrices (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437100000753
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:280:y:2000:i:3:p:497-504
DOI: 10.1016/S0378-4371(00)00075-3
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().